Chapter 19 Test

Name	KEY	
Class	Date	

Acids and Bases

Part I

Select the response that best completes each statement or answers each question. Write the letter of each answer in the space provided on the left.

- 1. Which of these tests would NOT distinguish an acid from a base?
 - a. sample releases H₂ gas in combination with certain metals
 - b. sample conducts electric current
 - c. sample changes indicator's color
 - d. sample registers on a pH meter
- 2. Brønsted's definition of acids and bases is based on ___
 - a. acid acceptance of a proton
- c. base donation of a proton
- b. acid donation of a proton
- d. base donation of an electron

- 3. Water can act as ____
 - a. an acid
 - b. a proton acceptor

- c. both a and b
- d. neither a nor b

- - 4. In the equation NH₃ + HNO₃ \rightarrow NH₄⁺ + NO₃⁻, NH₃ is _
 - a. an Arrhenius acid
 - b. a Brønsted acid

- c. an Arrhenius base
- d. a Brønsted base

- 5. A strong acid ___
 - a. ionizes almost completely
- c. is a concentrated solution

b. conducts poorly

d. both a and c

- 6. Identify the conjugate acid-base pair.
 - a. HCl and NaOH

c. HC₂H₃O₂ and OH⁻

b. NH₄⁺ and NH₃

d. HF and H₂O

Critical Thinking

- 7. When you test an unknown solution with litmus and with phenolphthalein and observe that the litmus turns red while the phenolphthalein turns colorless, what can you infer about the solution?
 - a. The solution is acidic.
 - b. The solution is basic.
 - c. The solution is neutral.
 - d. No inferences can be made since the observation made with litmus contradicts the observation made with phenolphthalein.

🔳 Part II

Select the response that best completes each statement. Write the letter of each answer in the space provided on the left.

- 8. The term polyprotic means that a substance ____
 - a. can be neutralized by many acids
- c. has more than one proton
- b. can be neutralized by many bases
- d. can donate more than one proton
- 9. The complete neutralization of an acid by a base requires ______.
 - a. equal concentrations of acid and base
- c. all the acidic protons to leave the acid
- b. a stronger base than acid

- d. a 1:1 ratio of acid and base
- 10. The equation acid + base \rightarrow salt + water illustrates a(n)
 - a. endothermic reaction

c. neutralization reaction

b. titration reaction

- d. equivalence reaction
- 11. The process of determining the concentration of an acid by adding a base is called _____ b. titration a. endothermy
 - c. neutralization
- d. equivalence

You must have ______ to reach the equivalence point in the reaction between hydrochloric acid and magnesium hydroxide.

- a. 1 mol HCl and 1 mol Mg(OH)₂
- c. 2 mol HCl and 2 mol Mg(OH)₂
- b. 2 mol HCl and 1 mol Mg(OH)₂
- d. 1 mol HCl and 2 mol Mg(OH)₂

Write the correct answer in the space provided.

13. Name the acid, base, and salt in this reaction: Ca $(OH)_2$ (aq) + $HC_2H_3O_2$ (aq) \rightarrow Ca $(C_2H_3O_2)_2$ + $2H_2O$

- a acid acetic acid
- b. base calcium hydrox
- c. salt calcium acetate

Critical Thinking

Refer to a periodic table and use a calculator to answer question 14. Show your work.

14. Titrating a solution of 25 mL sodium hydroxide requires 42.5 mL of a 0.225M HCl solution. What is the molarity of the basic solution? The reaction is NaOH + HCl \rightarrow NaCl + H₂0.

42.5 mL HCe IL 0.225 mol HCe I mol NaOH = 0.009 5625

0.0095625 mol = 0.3825 M

Copyright © by D. C. Heath and Company

Part III

Select the response that best completes each statement or answers each question. Write the letter of each answer in the space provided on the left.

- $\stackrel{\frown}{\mathbb{N}}$ 15. Dill pickles with a H₃O⁺ concentration of 1×10^{-3} are ______
 - a. acidic
 - b. basic
 - c. neutral
 - d. Question cannot be answered from the data given.

16. Water with a H_3O^+ concentration of 1×10^{-7} has a pH of ______

- a. 1
- b. -7
- c. 7
- d. Question cannot be answered from the data given.

17. Milk of magnesia with a H_3O^+ concentration of 1×10^{-10} is

- a. acidic
- b. basic
- c. neutral
- d. Question cannot be answered from the data given.

In the equilibrium reaction $H_2O(1) + H_2O(1) \longrightarrow H_3O^+$ (aq) + OH^- (aq), there are _

- a. more reactants than products
- b. more products than reactants
- c. equal numbers of products and reactants
- d. Question cannot be answered from the data given.

 $\stackrel{\textstyle \triangleright}{}$ 19. Which of the following describes the relationship of pH to $[H_3O^+]$?

- a. As pH decreases, [H₃O⁺] decreases.
- c. As pH increases, [H₃O⁺] increases.
- b. As pH decreases, [H₃O⁺] increases.
- d. a and c

 \leq 20. Which of the following describes the relationship of K_a to an acid's ability to donate a proton?

- a. As K_a decreases, proton donation increases.
- b. As K_a increases, proton donation decreases.
- c. As K_a increases, proton donation increases.
- d. K_a applies to water only.

 $\stackrel{\checkmark}{\smile}$ 21. Given the reaction: HClO + H₂O \rightleftharpoons H₃O⁺ + ClO⁻, K_a would be represented by the following:

a. $[H_30^+][CIO^-]$

c. $[H_30^+][CIO^-]$ [HCIO]

[HClO] [H₃0⁺] [ClO⁻]

- 22. Order these acids from weakest to strongest.
 - a. formic, acetic, hydrogen carbonate, phosphoric
 - b. hydrogen carbonate, phosphoric, acetic, formic
 - c. hydrogen carbonate, acetic, formic, phosphoric
 - d. phosphoric, formic, acetic, hydrogen carbonate
- - a. a strong acid and its salt

- c. any conjugate acid-base pair
- b. a weak acid and its conjugate base
- d. a weak acid and a strong base

Write the correct answer in the space provided. Show all of your work and circle your answer. Use a calculator with a log/antilog function for questions 24–27.

24. Calculate the [H₃0⁺] in a solution with a pH of 6.

25. Calculate the pH of a solution with a $[H_3O^+]$ of 3.2×10^{-6} .

26. Acid rain can have a pH of 3.5. What is the [H₃O⁺]?

27. Tomato juice has a $[H_3O^+]$ of 2.5×10^{-6} . What is its pH?

28. Complete the following table.

[H ₃ O ⁺]	[OH ⁻]	pH	pOH
a. 1.0 × 10 ⁻³	/ e -!!	3	
b. 1.0 <i>M</i>	1 = - 14		14
c. 1.0×10^{-10}	1E-4	10	4
d. 1.0×10^{-14}	1.0M	14	0

Refer to the figure below to answer questions 29–30. The titration curve plots pH versus the volume of added solution.

- 29. Is the original solution acidic or basic? basic
- 30. The equivalence point is reached at pH ______ and _____ 50 ____ ml of volume added.
- Write separate equations to show how H₂CO₃ and its conjugate base can buffer [H₃O⁺] and [OH⁻] in your body.

Critical Thinking

Explain how Le Châtelier's principle applies to the equations in the previous question.

Laboratory Investigation

Refer to the table below to answer question 33.

Indicator	pH range	color below lower pH	color above higher pH
methyl orange	3.1-4.4	red	yellow
bromthymol blue	6.0–7.6	yellow	blue
litmus	4.5-8.3	red	blue
phenolphthalein	8.3-10.0	colorless	red

- 33. Predict the pH range of the unknown solutions.
 - a. Unknown A turns litmus blue and phenolphthalein red.

b. Unknown B turns phenolphthalein colorless and methyl orange yellow.

c. Unknown C turns bromthymol blue yellow and litmus red.

d. Unknown D turns bromthymol blue yellow and methyl orange yellow.